Dynamics of bound exciton complexes in CdS nanobelts.
نویسندگان
چکیده
Intrinsic defects such as vacancies, interstitials, and anti-sites often introduce rich luminescent properties in II-VI semiconductor nanomaterials. A clear understanding of the dynamics of the defect-related excitons is particularly important for the design and optimization of nanoscale optoelectronic devices. In this paper, low-temperature steady-state and time-resolved photoluminescence (PL) spectroscopies have been carried out to investigate the emission of cadmium sulfide (CdS) nanobelts that originates from the radiative recombination of excitons bound to neutral donors (I(2)) and the spatially localized donor-acceptor pairs (DAP), in which the assignment is supported by first principle calculations. Our results verify that the shallow donors in CdS are contributed by sulfur vacancies while the acceptors are contributed by cadmium vacancies. At high excitation intensities, the DAP emission saturates and the PL is dominated by I(2) emission. Beyond a threshold power of approximately 5 μW, amplified spontaneous emission (ASE) of I(2) occurs. Further analysis shows that these intrinsic defects created long-lived (spin triplet) DAP trap states due to spin-polarized Cd vacancies which become saturated at intense carrier excitations.
منابع مشابه
Exciton-Related Photoluminescence and Lasing in CdS Nanobelts
Exciton-Related Photoluminescence and Lasing in CdS Nanobelts B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun* Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore Division ofMicroelectronics, School of Electrical and Electronics Engineering, Nanyang Technologi...
متن کاملSurface depletion induced quantum confinement in CdS nanobelts.
We investigate the surface depletion induced quantum confinement in CdS nanobelts beyond the quantum confinement regime, where the thickness is much larger than the bulk exciton Bohr radius. From room temperature to 77 K, the emission energy of free exciton A scales linearly versus 1/L(2) when the thickness L is less than 100 nm, while a deviation occurs for those belts thicker than 100 nm due ...
متن کاملEmission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons
We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the...
متن کاملSynthesis of Tapered CdS Nanobelts and CdSe Nanowires with Good Optical Property by Hydrogen-Assisted Thermal Evaporation
The tapered CdS nanobelts and CdSe nanowires were prepared by hydrogen-assisted thermal evaporation method. Different supersaturation leads to two different kinds of 1D nanostructures. The PL measurements recorded from the as-prepared tapered CdS nanobelts and CdSe nanowires show only a bandgap emission with relatively narrow full-width half maximum, which means that they possess good optical p...
متن کاملNorth-Holland, Amsterdam DYNAMICS AND SPATIAL DISTRIBUTION OF EDGE LUMINESCENCE G[NERATORS IN CDS FROM TIME-RESOLVED EXCITATION SPECTROSCOPY
Although donor-acceptor (0-A) recombination UHP emission in semiconductors is reasonably well un2O~ ~ T’l.2K derstoo&, the processes contributing to the photo0 ~ production of the 0°-A°generators have not been o 489nm adequately explored. The interplay among exciton and charge carrier roles results in different spatial and neutral-pair-separation distributions 9 10 which are manifested in the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2011